Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Volume 8 No. 1 pp. 1-14 March 2017

ODD VERTEX EQUITABLE EVEN LABELING OF QUADRILATERAL SNAKE RELATED GRAPHS

A. LOURDUSAMY¹, J. SHOBANA MARY² AND F. PATRICK³ ^{1&3} Department of Mathematics, St. Xavier's College, Palayamkottai - 627002, India. ² M.Sc. Student, Reg. No: 144821ER016, Department of Mathematics St. Antony's College of Arts and Science for Women, Thamaraipadi, Dindigul - 624005, India. ¹Email: lourdusamy15@gmail.com ²Email: jsom17@gmail.com

³Email: patrick881990@gmail.com

Abstract: Let *G* be a graph with *p* vertices and *q* edges and $A = \{1,3,5,...,q\}$ if *q* is odd or $A = \{1,3,5,...,q+1\}$ if *q* is even. A graph *G* is said to be an odd vertex equitable even labeling if there exists a vertex labeling $f:V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all *a* and *b* in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are 2,4,...,2q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits odd vertex equitable even labeling is called an odd vertex equitable even graphs.

Keywords: vertex equitable labeling, odd vertex equitable even labeling, quadrilateral snake.

AMS Mathematics Subject Classification (2010): 05C78

(Received: 30th September 2016; Accepted: 20th October 2016)

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected. Let G(V, E) be a graph with p vertices and q edges. We follow the basic notations and terminologies of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [1]. The concept of vertex equitable labeling was introduced by Lourdusamy and Seenivasan [5]. Jeyanthi et al. introduced the concept of odd vertex equitable even labeling in [3].

Definition 1.1: Let *G* be a graph with *p* vertices and *q* edges and $A = \{1,3,5,...,q\}$ if *q* is odd or $A = \{1,3,5,...,q+1\}$ if *q* is even. A graph *G* is said to be an odd vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all *a* and *b* in *A*, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are 2,4, ...,2q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits odd vertex equitable even labeling is called an odd vertex equitable even graph.

Definition 1.2: The *subdivision of graph* S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.3: The *corona* $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the *i*th vertex of G_1 with an edge to every vertex in the *i*th copy of G_2 .

Definition 1.4: A *quadrilateral snake* Q_n is obtained from a path $u_1, u_2, u_3, ..., u_n$ by joining u_i, u_{i+1} to new vertices v_i, w_i respectively and then joining v_i and w_i . That is every edge of the path is replaced by a cycle C_4 .

Definition 1.5: A *double quadrilateral snake* $D(Q_n)$ consists of two quadrilateral snakes that have a common path.

Definition 1.6: A *double alternate quadrilateral snake* $DA(Q_n)$ consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path $u_1, u_2, u_3, ..., u_n$ by joining u_i and u_{i+1} to the new vertices v_i, x_i and w_i, y_i respectively and adding the edges $v_i w_i$ and $x_i y_i$.

2. Main Result

Theorem 2.1 The graph $Q_n \odot K_1$ is an odd vertex equitable even graph.

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n . Let $V(Q_n \odot K_1) = \{u_i, u'_i : 1 \le i \le n\} \cup \{v_i, w_i, v'_i, w'_i : 1 \le i \le n - 1\}$ and $E(Q_n \odot K_1) = \{u_i u'_i : 1 \le i \le n\} \cup$

 $\{u_i u_{i+1}, u_i v_i, v_i w_i, w_i u_{i+1}, v_i v'_i, w_i w'_i : 1 \le i \le n-1\}$. Then, $Q_n \odot K_1$ is of order 6n - 4 and size 7n - 6.

Case (i): n is odd.

Define $f: V(Q_n \odot K_1) \rightarrow A = \{1, 3, ..., 7n - 6\}$ as follows:

$$\begin{split} f(u_i) &= \begin{cases} 7i-6 & if \ i \ is \ odd \ and \ 1 \le i \le n \\ 7i-5 & if \ i \ is \ even \ and \ 1 \le i \le n; \end{cases} \\ f(u_i^{'}) &= \begin{cases} 7i-6 & if \ i \ is \ odd \ and \ 1 \le i \le n-1 \\ 7i-7 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \\ f(v_i) &= \begin{cases} 7i-4 & if \ i \ is \ odd \ and \ 1 \le i \le n-1 \\ 7i-5 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \\ f(v_i^{'}) &= \begin{cases} 7i-4 & if \ i \ is \ odd \ and \ 1 \le i \le n-1 \\ 7i-3 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \\ f(w_i) &= \begin{cases} 7i-2 & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-1 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \\ f(w_i^{'}) &= \begin{cases} 7i-2 & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-1 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \\ f(w_i^{'}) &= \begin{cases} 7i & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-1 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases} \end{cases}$$

It can be verified that the induced edge labels of $Q_n \odot K_1$ are 2,4, ..., 14n - 12. Hence the graph $Q_n \odot K_1$ is an odd vertex equitable even graph.

Case (ii): n is even.

We define a vertex labeling $f: V(Q_n \odot K_1) \rightarrow A = \{1,3,...,7n-5\}$ as follows. Assign the labels to the vertices u_i, u'_i for $1 \le i \le n$ and v_i, w_i, v'_i, w'_i for $1 \le i \le n-1$ as in Case (i). It can be verified that the induced edge labels of $Q_n \odot K_1$ are 2,4, ...,14n - 12. Hence the graph $Q_n \odot K_1$ is an odd vertex equitable even graph.

Example 2.2: An odd vertex equitable even labeling of $Q_5 \odot K_1$ is shown in the Figure 2.1.

Figure 2.1

Theorem 2.3 The graph $D(Q_n)$ is an odd vertex equitable even graph. **Proof.** The quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$. Let $V(D(Q_n)) = \{v_i, w_i, v'_i, w'_i : 1 \le i \le n-1\} \cup \{u_i : 1 \le i \le n\}$ and $E(D(Q_n)) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_{2i-1} v_i, u_{2i-1} v'_i, u_{2i} w_i, u_{2i} w'_i, v_i w_i, v'_i w'_i : 1 \le i \le n-1\}$.

Then, $D(Q_n)$ is of order 5n - 4 and size 7n - 7.

Case (i): *n* is odd.

Define $f: V(D(Q_n)) \rightarrow A = \{1,3,...,7n-6\}$ as follows: $f(u_i) = \begin{cases} 7i-6 & if \ i \ is \ odd \ and \ 1 \le i \le n \\ 7i-7 & if \ i \ is \ even \ and \ 1 \le i \le n-1 \end{cases}$ $f(v_i) = \begin{cases} 7i-6 & if \ i \ is \ odd \ and \ 1 \le i \le n-1 \\ 7i-5 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases}$ $f(w_i) = \begin{cases} 7i-2 & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-3 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases}$ $f(v_i') = \begin{cases} 7i-4 & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-3 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases}$ $f(w_i') = \begin{cases} 7i-4 & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-3 & if \ i \ is \ even \ and \ 1 \le i \le n-1; \end{cases}$ $f(w_i') = \begin{cases} 7i & if \ i \ is \ odd \ and \ 1 \le i \le n-1; \\ 7i-1 & if \ i \ is \ even \ and \ 1 \le i \le n-1. \end{cases}$ It can be easily verified that the induced edge labels of $D(Q_n)$ are 2,4, ..., 14n - 14. Hence the graph $D(Q_n)$ is an odd vertex equitable even graph.

Case (ii): *n* is even.

We define a vertex labeling $f: V(D(Q_n)) \rightarrow A = \{1,3,...,7n-7\}$ as follows. Assign the labels to the vertices u_i for $1 \le i \le n$ and v_i, w_i, v'_i, w'_i for $1 \le i \le n-1$ as in Case (i). It can be verified that the induced edge labels of $D(Q_n)$ are 2,4, ...,14n – 14. Hence the graph $D(Q_n)$ is an odd vertex equitable even graph.

Example 2.4: An odd vertex equitable even labeling of $D(Q_4)$ is shown in the Figure 2.2.

Theorem 2.5 The graph $DA(Q_n)$ is an odd vertex equitable even graph.

Proof. The quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$. Let $V(DA(Q_n)) = \{v_i, w_i, v'_i, w'_i : 1 \le i \le n - 1\} \cup \{u_i : 1 \le i \le n\}$ and $E(DA(Q_n)) = \{u_i u_{i+1} : 1 \le i \le n - 1\} \cup \{u_i v_i, u_i v'_i, u_{i+1} w_i, u_{i+1} w'_i, v_i w_i, v'_i w'_i : 1 \le i \le \frac{n}{2}\}.$ Then,

$$V(DA(Q_n)) = \begin{cases} 3n-2 & \text{if } n \text{ is odd} \\ 3n & \text{if } n \text{ is even} \end{cases}$$
$$E(DA(Q_n)) = \begin{cases} 4n-4 & \text{if } n \text{ is odd} \\ 4n-1 & \text{if } n \text{ is even} \end{cases}$$

Case (i): *n* is odd.

Define $f: V(DA(Q_n)) \rightarrow A = \{1,3,...,4n-3\}$ as follows:

 $f(u_i) = \begin{cases} 4i - 3 & if \ i \text{ is odd and } 1 \le i \le n \\ 4i - 1 & if \ i \text{ is even and } 1 \le i \le n; \end{cases}$

$$f(v_i) = 8i - 7, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(w_i) = 8i - 3, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

 $f(v_i') = 8i - 5, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$ $f(w_i') = 8i - 1, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$

It can be easily verified that the induced edge labels of $DA(Q_n)$ are 2,4, ...,8n - 8. Hence the graph $DA(Q_n)$ is an odd vertex equitable even graph.

Case (ii): *n* is even.

We define a vertex labeling $f: V(DA(Q_n)) \to A = \{1,3,...,4n-1\}$ as follows. Assign the labels to the vertices u_i for $1 \le i \le n$ and v_i, w_i, v_i, w_i' for $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$ as in Case (i). It can be verified that the induced edge labels of $DA(Q_n)$ are 2,4,...,8n-2. Hence the graph $DA(Q_n)$ is an odd vertex equitable even graph.

Example 2.6: An odd vertex equitable even labeling of $DA(Q_5)$ is shown in the Figure 2.3.

Figure 2.3

Theorem 2.7 The graph $S(Q_n)$ is an odd vertex equitable even graph.

Proof. Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n . Let $V(S(Q_n)) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, v'_i, w'_i, u'_i, x_i : 1 \le i \le n-1\}$ and $E(S(Q_n)) = \{u_i u'_i, u'_i u_{i+1}, u_i v'_i, v'_i v_i, v_i x_i, x_i w_i, w'_i, w'_i, u'_{i+1} : 1 \le i \le n-1\}$. Then, $S(Q_n)$ is of order 7n - 6 and size 8n - 8. Define $f: V(S(Q_n)) \to A = \{1, 3, ..., 8n - 7\}$ as follows: $f(u_i) = 8i - 7, \ 1 \le i \le n;$ $f(u_i) = 8i - 1, \ 1 \le i \le n-1;$ $f(v_i) = 8i - 5, \ 1 \le i \le n-1;$ $f(v_i) = 8i - 7, \ 1 \le i \le n-1;$ $f(w_i) = 8i - 1, \ 1 \le i \le n-1;$ $f(w_i) = 8i - 1, \ 1 \le i \le n-1;$ $f(w_i) = 8i - 3, \ 1 \le i \le n-1;$ $f(w_i) = 8i - 3, \ 1 \le i \le n-1;$ $f(x_i) = 8i - 5, \ 1 \le i \le n-1;$

It can be easily verified that the induced edge labels of $S(Q_n)$ are 2,4, ...,16*n* – 16. Hence the graph $S(Q_n)$ is an odd vertex equitable even graph.

Example 2.8: An odd vertex equitable even labeling of $S(Q_4)$ is shown in the Figure 2.4.

Theorem 2.9 The graph $S(D(Q_n))$ is an odd vertex equitable even graph.

Proof. Let $V(S(D(Q_n))) = \{u_i : 1 \le i \le n\} \bigcup \{v_i, w_i, v'_i, w'_i\}$ $u'_{i}, x_{i}, x'_{i}, z_{i}, z'_{i}, y'_{i}, y'_{i} : 1 \le i \le n-1$ and $E(S(D(Q_{n}))) =$ $\{u_iu_i, u_i'u_{i+1}, u_iv_i', v_i'v_i, v_iz_i, z_iw_i, w_iw_i', w_i'u_{i+1}: 1 \le i \le n-1\}$ $\cup \{u_i x_i, x_i, x_i, x_i, z_i, z_i, y_i, y_i, y_i, y_i, u_{i+1}: 1 \le i \le n-1\}$. Then, $S(D(Q_n))$ is of order 12n - 11 and size 14n - 14. Define $f: V(S(D(Q_n))) \rightarrow A = \{1, 3, \dots, 14n - 13\}$ as follows: $f(u_i) = 14i - 13, \ 1 \le i \le n;$ $f(u'_i) = 14i - 1, \ 1 \le i \le n - 1;$ $f(v_i) = 14i - 11, \ 1 \le i \le n - 1;$ $f(v_i) = 14i - 13, \ 1 \le i \le n - 1;$ $f(w_i) = 14i - 7, \ 1 \le i \le n - 1$: $f(w_i) = 14i - 9, \ 1 \le i \le n - 1;$ $f(x_i) = 14i - 5, \ 1 \le i \le n - 1;$ $f(x_i) = 14i - 7, \ 1 \le i \le n - 1;$ $f(y_i) = 14i - 1, \ 1 \le i \le n - 1;$ $f(v_i) = 14i - 3, \ 1 \le i \le n - 1;$ $f(z_i) = 14i - 11, \ 1 \le i \le n - 1;$ $f(z_i') = 14i - 5, \ 1 \le i \le n - 1.$

It can be easily verified that the induced edge labels of $S(D(Q_n))$ are 2,4, ..., 28*n* – 28. Hence the graph $S(D(Q_n))$ is an odd vertex equitable even graph.

Example 2.10: An odd vertex equitable even labeling of $S(D(Q_4))$ is shown in the Figure 2.5.

Theorem 2.11 The graph $S(DA(Q_n))$ is an odd vertex equitable even graph.

Proof.

Let

$$V(S(DA(Q_n))) = \{u_i : 1 \le i \le n\} \cup \{v_i, w_i, v'_i, w'_i, v'_i, v'_i,$$

Case (i): *n* is odd.

Define $f: V(S(DA(Q_n))) \rightarrow A = \{1,3, \dots, 8n-7\}$ as follows:

$$f(u_i) = \begin{cases} 8i - 7 & if \ i \text{ is odd and } 1 \le i \le n \\ 8i - 1 & if \ i \text{ is even and } 1 \le i \le n; \end{cases}$$

$$f(u'_i) = \begin{cases} 8i + 5 & if \ i \text{ is odd and } 1 \le i \le n - 1 \\ 8i - 1 & if \ i \text{ is even and } 1 \le i \le n - 1; \end{cases}$$

$$f(v_i) = 16i - 13, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(v'_i) = 16i - 15, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(w_i) = 16i - 9, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(w_i) = 16i - 11, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(x_i) = 16i - 7, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(x_i) = 16i - 9, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(y_i) = 16i - 3, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(y_i) = 16i - 5, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(z_i) = 16i - 13, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

$$f(z_i) = 16i - 7, \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor;$$

It can be easily verified that the induced edge labels of $S(DA(Q_n))$ are 2,4, ...,16*n* – 16. Hence the graph $S(DA(Q_n))$ is an odd vertex equitable even graph.

Case (ii): *n* is even.

We define a vertex labeling $f: V(S(DA(Q_n))) \to A = \{1,3,...,8n-1\}$ as follows. Assign the labels to the vertices u_i for $1 \le i \le n$, u'_i for $1 \le i \le n-1$ and $v_i, w_i, x_i, y_i, z_i, v'_i, w'_i, x'_i, y'_i, z'_i$ for $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$ as in Case (i). It can be verified that the induced edge labels of $S(DA(Q_n))$ are 2,4, ..., 16n - 4. Hence the graph $S(DA(Q_n))$ is an odd vertex equitable even graph.

Example 2.12: An odd vertex equitable even labeling of $S(DA(Q_5))$ is shown in the Figure 2.6.

Theorem 2.13: The graph $S(P_n \odot K_1)$ is an odd vertex equitable even graph.

Proof: Let $u_1, u_2, u_3, ..., u_n$ be the vertices of path P_n . Let $V(S(P_n \odot K_1)) = \{u_i, v_i, v_i' : 1 \le i \le n\} \cup \{u_i': 1 \le i \le n-1\}$ and $E(S(P_n \odot K_1)) = \{u_i u_i', u_i' u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_i', u_i v_i' : 1 \le i \le n\}$. Then $S(P_n \odot K_1)$ is of order 4n - 1 and size 4n - 2. Define $f: V(S(P_n \odot K_1)) \rightarrow A = \{1, 3, 5, ..., 4n - 1\}$ as follows: $f(u_i) = \begin{cases} 4i - 1 & if & i \text{ is odd and } 1 \le i \le n \\ 4i - 3 & if & i \text{ is even and } 1 \le i \le n-1 \\ 4i - 3 & if & i \text{ is even and } 1 \le i \le n-1; \end{cases}$ $f(v_i) = \begin{cases} 4i - 3 & if & i \text{ is odd and } 1 \le i \le n \\ 4i - 1 & if & i \text{ is odd and } 1 \le i \le n-1; \end{cases}$ $f(v_i) = \begin{cases} 4i - 3 & if & i \text{ is odd and } 1 \le i \le n; \\ 4i - 1 & if & i \text{ is even and } 1 \le i \le n-1; \end{cases}$ $f(v_i) = \begin{cases} 4i - 3 & if & i \text{ is odd and } 1 \le i \le n; \\ 4i - 1 & if & i \text{ is even and } 1 \le i \le n; \end{cases}$ $f(v_i') = \begin{cases} 4i - 3 & if & i \text{ is odd and } 1 \le i \le n-1; \\ 4i - 1 & if & i \text{ is even and } 1 \le i \le n-1; \end{cases}$

$f(v_n') = 4i - 3.$

It can be easily verified that the induced edge labels of $S(P_n \odot K_1)$ are 2,4, ..., 8n - 4. Hence the graph $S(P_n \odot K_1)$ is an odd vertex equitable even graph.

Example 2.14: An odd vertex equitable even labeling of $S(P_4 \odot K_1)$ is shown in the Figure 2.7.

REFERENCES

- 1. J. A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic J. Combin.*, 18 (2015).
- 2. F. Harary, Graph Theory, Addison-wesley, Reading, Mss 1972.
- 3. P. Jeyanthi and A. Maheshwari, An Odd vertex equitable even labeling, *Proyecciones Journal of Mathematics*, 36(1), (2017), 1-14.
- P. Jeyanthi, A. Maheshwari and M. Vijayalakshmi, New results on vertex equitable labeling, *J. Algebra Comb. Discrete Appl.*, 3(2), (2016), 97-104.

- 5. P. Jeyanthi, A. Maheshwari and M. Vijayalakshmi, Vertex Equitable Labeling of Double Alternate Snake Graphs, *Journal of Algorithms and Computation*, 46(2015), 27-34.
- A. Lourdusamy, and M. Seenivasan, Vertex Equitable Labeling of graphs, *Journal of Discrete Mathematical Sciences & Cryptography*, 11(6) (2008), 727-735.